In vitro host cell reactivation of alkylated bacteriophage T7 deoxyribonucleic acid by repair-deficient strains of Escherichia coli.

AUTOR(ES)
RESUMO

An in vitro system capable of packaging bacteriophage T7 deoxyribonucleic acid (DNA) into phage heads to form viable phage particles has been used to monitor the biological consequences of DNA dam aged by alkylating agents, and an in vitro DNA replication system has been used to examine the ability of alkylated T7 DNA to serve as template for DNA synthesis. The survival of phage resulting from in vitro packaging of DNA preexposed to various concentrations of methyl methane sulfonate or ethyl methane sulfonate closely paralleled the in vivo situation, in which intact phage were exposed to the alkylating agents. Host factors responsible for survival of alkylated T7 have been examined by using wild-type strains of EScherichia coli and mutants deficient in DNA polymerase I (polA) or 3-methyladenine-DNA glycosylase (tag). For both in vivo and in vitro situations, a deficiency in 3-methyladenine-DNA glycosylase dramatically reduced phage survival relative to that in the wild type, whereas a deficiency in DNA polymerase I had an intermediate effect. Furthermore, when the tag mutant was used as an indicator strain, phage survival was enhanced when alkylated DNA was packaged with extracts prepared from a wild-type strain in place of the tag mutant or by complementing a tag extract with an uninfected tag+ extract, indicating in vitro repair during packaging.

Documentos Relacionados