In vitro sorption of albumin, immunoglobulin G, and lysozyme to enamel and cementum from human teeth.

AUTOR(ES)
RESUMO

Sorption of three 125I-labeled human proteins (albumin, immunoglobulin G, and lysozyme) to enamel and cementum was investigated. All three proteins sorped most when suspended in 0.0005 M solution of phosphate or calcium chloride where the least competition between solute ions and label occurred. The addition of human serum to labeled proteins caused a decrease in their sorption which could be partially reversed by increasing the concentration of label. Kinetic experiments demonstrated that sorption was dependent on protein concentration and incubation time and that most of the sorption occurred within the first minute of the reaction. In conclusion, the binding of the three labeled proteins was affected by the charge of the solute ions and was dependent on ion concentration and reaction time. Sorption correlated for the most part with the pK values of the proteins and thus lysozyme, the most basic protein, sorped more than immunoglobulin G, which sorped more than albumin. In all cases, cementum bound more basic protein than did enamel. Increased levels of albumin sorption to enamel occurred when the protein was suspended in the CaCl2 solution rather than in phosphate. In addition, based on Scatchard analysis, approximately twice as many potential protein binding sites were found for cementum versus enamel.

Documentos Relacionados