In Vivo Respiratory Metabolism of Illuminated Leaves1

AUTOR(ES)
FONTE

American Society of Plant Biologists

RESUMO

Day respiration of illuminated C3 leaves is not well understood and particularly, the metabolic origin of the day respiratory CO2 production is poorly known. This issue was addressed in leaves of French bean (Phaseolus vulgaris) using 12C/13C stable isotope techniques on illuminated leaves fed with 13C-enriched glucose or pyruvate. The 13CO2 production in light was measured using the deviation of the photosynthetic carbon isotope discrimination induced by the decarboxylation of the 13C-enriched compounds. Using different positional 13C-enrichments, it is shown that the Krebs cycle is reduced by 95% in the light and that the pyruvate dehydrogenase reaction is much less reduced, by 27% or less. Glucose molecules are scarcely metabolized to liberate CO2 in the light, simply suggesting that they can rarely enter glycolysis. Nuclear magnetic resonance analysis confirmed this view; when leaves are fed with 13C-glucose, leaf sucrose and glucose represent nearly 90% of the leaf 13C content, demonstrating that glucose is mainly directed to sucrose synthesis. Taken together, these data indicate that several metabolic down-regulations (glycolysis, Krebs cycle) accompany the light/dark transition and emphasize the decrease of the Krebs cycle decarboxylations as a metabolic basis of the light-dependent inhibition of mitochondrial respiration.

Documentos Relacionados