Increased apolipoprotein E and c-fms gene expression without elevated interleukin 1 or 6 mRNA levels indicates selective activation of macrophage functions in advanced human atheroma.

AUTOR(ES)
RESUMO

Cells found within atherosclerotic lesions can produce in culture protein mediators that may participate in atherogenesis. To test whether human atheromata actually contain transcripts for certain of these genes, we compared levels of mRNAs in carotid or coronary atheromata and in nonatherosclerotic human vessels by polymerase chain reaction (PCR) amplification of cDNAs reverse-transcribed from RNA. We measured PCR products (generated during exponential amplification) by incorporation of 32P-labeled primers. Levels of interleukin 1 alpha, 1 beta, or 6 mRNAs in plaques and controls did not differ. Compared to uninvolved vessels, plaques did contain higher levels of mRNA encoding platelet-derived growth factor A chain (42 +/- 24 vs. 12 +/- 10 fmol of product; mean +/- SD; n = 8 and 8, respectively; P = 0.007) and B chain (41 +/- 36 vs. 4 +/- 3 fmol of product, n = 14 and 6, respectively; P = 0.024). Atherosclerotic lesions consistently had much higher levels of apolipoprotein E (apoE) mRNA than did control vessels (131 +/- 71 vs. 5 +/- 3 fmol of product; n = 12 and 10, respectively; P less than 0.001). Direct RNA blot analyses confirmed elevated levels of apoE mRNA in plaque extracts. To test whether mononuclear phagocytes might be a source of the apoE mRNA, we studied a selective marker for cells of the monocytic lineage, the c-fms protooncogene, which encodes the receptor for macrophage colony-stimulating factor. Plaques also contained elevated levels of c-fms mRNA (30 +/- 17 vs. 5 +/- 3 fmol of product; n = 10 and 7, respectively; P = 0.002). Immunohistochemical colocalization demonstrated apoE protein in association with macrophages in plaques, whereas nonatherosclerotic vessels showed no immunoreactive apoE. ApoE produced locally in atheroma might modulate the functions of lesional T cells or promote "reverse cholesterol transport" by associating with high density lipoprotein particles, thus targeting them for peripheral uptake. Macrophages within the advanced human atheroma appear to exhibit a selective program of activation as they express high levels of apoE, whereas overall levels of interleukin 1 or 6 mRNAs in plaques are not elevated.

Documentos Relacionados