Increased Phosphorylation of a 26-kD Pollen Protein Is Induced by the Self-Incompatibility Response in Papaver rhoeas.

AUTOR(ES)
RESUMO

We have investigated whether specific protein phosphorylation events are induced in Papaver rhoeas pollen as a consequence of the self-incompatibility (SI) response. Pollen grown in vitro in the presence of 32P-orthophosphate was challenged with biologically active recombinant S proteins, and pollen proteins were extracted and analyzed. The results provide strong evidence that the increased phosphorylation of a 26-kD protein of pl 6.2, p26, is specifically induced by the SI response. This phosphorylation event occurs in living pollen tubes and was observed specifically when pollen was challenged with S proteins that are incompatible with the S alleles carried by the pollen and not when pollen was challenged with compatible or incompatible heat-denatured S proteins. Further characterization demonstrated that p26 comprises two phosphoproteins, p26.1 and p26.2, that are found in soluble and microsomal fractions, respectively. Increased phosphorylation of p26.1 is implicated in the SI response and appears to be Ca2+ and calmodulin dependent. These data argue for the involvement of a Ca2+-dependent protein kinase requiring calmodulin-like domains, whose activation comprises an intracellular signal mediating the SI response in P. rhoeas pollen.

Documentos Relacionados