Induction of distinct types of spontaneous electrical activities in mammary epithelial cells by epidermal growth factor and insulin.

AUTOR(ES)
RESUMO

Electrophysiological measurements of the membrane potentials of mouse mammary epithelial cells in primary culture revealed the presence of spontaneous-oscillating-hyperpolarizing potentials in cells incubated with epidermal growth factor. The hyperpolarizing potentials were 5-20 mV in amplitude and about 10 sec in duration. The peak height of the response was reduced by hyperpolarization, and the input membrane resistance decreased during the response. The response was probably due to activation of K+ channels. The latency period for the epidermal growth factor induction of the hyperpolarizing potential was approximately 3 hr. In contrast, insulin induced spontaneous-depolarizing potentials that were about 5 mV in amplitude and 1 sec in duration. The depolarizing potentials were attributed to activity of ion channels, since the peak height was dependent on the membrane potential and the depolarizing potential was accompanied by a decrease of input membrane resistance. The time lag for the induction of the depolarizing potential was 6-12 hr. Other hormones involved in mammary cell differentiation, such as cortisol and prolactin, neither induced the depolarizing potentials nor changed the induction of depolarizing potential by insulin. In addition, other growth factors, such as nerve growth factor and fibroblast growth factor, elicited no electrical activity.

Documentos Relacionados