Induction of RNA editing at heterologous sites by sequences in apolipoprotein B mRNA.

AUTOR(ES)
RESUMO

An RNA editing mechanism modifies apolipoprotein B (apo-B) mRNA in the intestine by converting cytosine at nucleotide (nt) 6666 to uracil. To define the sequence requirements for editing, mutant apo-B RNAs were analyzed for the ability to be edited in vitro by enterocyte extracts. Editing was detected by a sensitive and linear primer extension assay. An upstream region (nt 6648 to 6661) which affected the efficiency of editing was identified. RNAs with mutations in this efficiency sequence were edited at 22 to 160% of wild-type levels. Point mutations in a downstream 11-nt mooring sequence (nt 6671 to 6681) abolished editing, confirming previous studies (R. R. Shah, T. J. Knott, J. E. Legros, N. Navaratnam, J. C. Greeve, and J. Scott, J. Biol. Chem. 266:16301-16304, 1991). The optimal distance between the editing site and the mooring sequence is 5 nt, but a C positioned 8 nt upstream is edited even when nt 6666 contains U. The efficiency and mooring sequences were inserted individually and together adjacent to a heterologous C in apo-B mRNA. The mooring sequence alone induced editing of the C at nt 6597 both in vitro and in transfected rat hepatoma cells. Editing at nt 6597 was specific, was independent of editing at nt 6666, and was stimulated to wild-type levels when the efficiency sequence was also inserted. Introduction of the mooring sequence into a heterologous mRNA, luciferase mRNA, induced editing of an upstream cytidine. Although UV cross-linking studies have previously shown that proteins of 60 to 66 kDa cross-link to apo-B mRNA, these proteins did not cross-link to the luciferase translocation mutants.

Documentos Relacionados