Influence of Salivary Components and Extracellular Polysaccharide Synthesis from Sucrose on the Attachment of Streptococcus mutans 6715 to Hydroxyapatite Surfaces

AUTOR(ES)
RESUMO

The adsorption of 3H-labeled Streptococcus mutans 6715 cells to disks of hydroxyapatite (HA) was studied. The number of streptococci that adsorbed was logarithmically related to the concentration of cells available up to at least 2 × 108 per ml; equilibrium occurred within 45 min. Assay reliability was verified by direct scanning electron microscopic counts. Untreated HA disks exposed to buffered saline (PBS)-suspended streptococci at a concentration of 1.1 × 108 per ml absorbed 3.2 × 106 cells per cm2; approximately 3% of the surface area was, therefore, occupied by adsorbed organisms. The presence of adsorbed salivary components on HA reduced the number of attaching S. mutans cells by half. When S. mutans cells were suspended in saliva to mimic conditions existing in the mouth, the number of streptococci adsorbing to saliva-treated HA was reduced more than 30-fold compared to untreated HA. Approximately one-half of the streptococci adsorbed to untreated or to saliva-treated HA disks could be desorbed over a 4-h period with 0.067 M phosphate buffer. S. mutans cells exposed to sucrose to permit extracellular polysaccharide synthesis before or during adsorption attached in fewer numbers to both saliva-treated and untreated HA than PBS-treated organisms. When S. mutans cells adsorbed on untreated HA were exposed to sucrose, fewer organisms could be desorbed; thus, in situ polysaccharide synthesis promoted their more firm attachment to untreated HA. However, when saliva-suspended streptococci were adsorbed to saliva-treated HA surfaces, exposure to sucrose before or subsequent to adsorption did not promote more firm attachment. Evidently, the powerful adherence-inhibiting and desorptive effects of salivary components overshadowed any promoting effects attributable to glucan synthesis from sucrose. Similarly, no differences were noted in the desorption of S. mutans cells from human teeth after exposure to sucrose, glucose, or PBS relative to a strain of Streptococcus mitis (S. mitior). Thus, no evidence was obtained to support the hypothesis that glucan synthesis from sucrose was essential for, or promoted, the attachment of S. mutans cells to HA surfaces exposed to saliva or to the smooth surfaces of human teeth.

Documentos Relacionados