Inhibition of Chlamydia psittaci in oxidatively active thioglycolate-elicited macrophages: distinction between lymphokine-mediated oxygen-dependent and oxygen-independent macrophage activation.

AUTOR(ES)
RESUMO

Immune sensitization of spleen cells was required to generate lymphokines (LK) that activated thioglycolate-elicited peritoneal macrophages (thio MACs) to respond via both oxygen-dependent and oxygen-independent systems. LK produced by incubating spleen cells from immunized A/J and LAF mice with concanavalin A stimulated a response by thio MACs to phorbol-12-myristate-13-acetate (PMA)-induced chemiluminescence and activated these cells to inhibit intracellular Chlamydia psittaci replication. Concanavalin A-incubated spleen cell preparations from unimmunized animals stimulated neither PMA-induced chemiluminescence nor antichlamydial activity. Activated thio MACs demonstrated a rapid chemiluminescence response to the intracellular protozoan Toxoplasma gondii, but C. psittaci did not induce chemiluminescence in LK-activated thio MACs, although cells exposed to C. psittaci retained their responsiveness to PMA-induced chemiluminescence. The PMA-induced response was inhibited by the addition of exogenous superoxide dismutase and catalase and was therefore related to the production of superoxide anion (O2 . -) and H2O2 by these cells. LK preparations incubated at 56 degrees C before macrophage treatment retained antichlamydial activity, but heated preparations no longer stimulated thio MACs to respond in the chemiluminescence assay. These data provide evidence that macrophage oxygen-dependent and oxygen-independent systems are simultaneously activated by LK, and these preparations comprise at least two distinct activities. The portion responsible for activating oxygen-dependent systems (PMA-induced chemiluminescence) is heat labile, whereas the portion responsible for activating oxygen-independent systems is heat stable. It is the latter system that results in restriction of chlamydial growth and in vitro parasite persistence.

Documentos Relacionados