Inhibition of initiation of bacteriophage T4 DNA replication by perturbation of Escherichia coli host membrane composition.

AUTOR(ES)
RESUMO

3-Decynoyl-N-acetylcysteamine (3-decynoyl-NAC) is an analog which specifically causes the immediate cessation of the biosynthesis of unsaturated fatty acids in Escherichia coli, whereas the synthesis of saturated fatty acids is actually stimulated. As a result, the cell membrane accumulates saturated fatty acids in its phospholipid. Addition of the inhibitor at the time of infection of E. coli by T4 phage had no effect on normal phage replication and development, implying that the synthesis of unsaturated fatty acids per se has little effect on T4 DNA replication. However, if the integrity and composition of the bacterial membrane was grossly perturbed by first treating the cells with the inhibitor for 60 min before infection, the proper initiation and the attainment of a rapid rate of T4 DNA synthesis were not observed. Under these conditions, a full complement of T4 early proteins was synthesized. The membrane associability of the known DNA delay proteins induced by wild-type T4 phage in the treated cells resembled that expected of a culture of untreated cells infected with a DNA delay mutant. When any one of three DNA delay mutants was used to infect 3-decynoyl-NAC-treated cells, T4 DNA replication was aborted. These findings suggest that some kind of specific interactions among the initiation proteins defined by the DNA delay mutants and the bacterial membrane may be necessary to facilitate the normal initiation and rapid rate of T4 DNA replication. A model for the involvement of the three different initiation proteins and the subsequent attainment of rapid DNA synthesis is discussed.

Documentos Relacionados