Interaction of Neisseria meningitidis with a polarized monolayer of epithelial cells.

AUTOR(ES)
RESUMO

An important step in the pathogenesis of Neisseria meningitidis is the crossing of two cellular barriers, one in the nasopharynx and one in the brain. To approach the mechanisms by which this bacterium can achieve these goals, we studied the interactions between N. meningitidis and a monolayer of polarized tight junction-forming T84 cells grown on filter units. A capsulated, piliated, Opa-, and Opc- N. meningitidis strain is shown to be capable of adhering to and crossing this monolayer several orders of magnitude more efficiently than an isogenic nonpiliated derivative. This bacterial interaction does not affect the barrier function of tight junctions, as assessed by (i) the absence of modification of the transepithelial resistance, (ii) the lack of increase of [3H]inulin penetration across the monolayer, and (iii) the absence of delocalization of ZO-1, a tight junction protein. Electron microscopy studies and confocal examinations demonstrated that N. meningitidis (i) induces cytoskeletal rearrangements with actin polymerization beneath adherent bacteria, (ii) is intimately attached to the apical membrane of the cells, and (iii) can be internalized inside cells. Immunofluorescent staining with antipilus antibodies showed evidence that meningococcal piliation was dramatically reduced at later time points of bacterial cell interaction compared to the early phase of this interaction. In addition, adhesive bacteria recovered from an infected monolayer are piliated, capsulated, Opa-, and Opc-, a phenotype similar to that of the parental strain. Taken together, these data demonstrate that following pilus-mediated adhesion, N. meningitidis is involved in an intimate attachment which requires a bacterial component different from Opa and Opc and that meningococci cross a monolayer of tight-junction-forming epithelial cells by using a transcellular pathway rather than a paracellular route.

Documentos Relacionados