Intracellular Hepadnavirus Nucleocapsids Are Selected for Secretion by Envelope Protein-Independent Membrane Binding

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Hepadnaviruses are DNA viruses but, as pararetroviruses, their morphogenesis initiates with the encapsidation of an RNA pregenome, and these viruses have therefore evolved mechanisms to exclude nucleocapsids that contain incompletely matured genomes from participating in budding and secretion. We provide here evidence that binding of hepadnavirus core particles from the cytosol to their target membranes is a distinct step in morphogenesis, discriminating among different populations of intracellular capsids. Using the duck hepatitis B virus (DHBV) and a flotation assay, we found about half of the intracellular capsids to be membrane associated due to an intrinsic membrane-binding affinity. In contrast to free cytosolic capsids, this subpopulation contained largely mature, double-stranded DNA genomes and lacked core protein hyperphosphorylation, both features characteristic for secreted virions. Against expectation, however, the selective membrane attachment observed did not require the presence of the large DHBV envelope protein, which has been considered to be crucial for nucleocapsid-membrane interaction. Furthermore, removal of surface-exposed phosphate residues from nonfloating capsids by itself did not suffice to confer membrane affinity and, finally, hyperphosphorylation was absent from nonenveloped nucleocapsids that were released from DHBV-transfected cells. Collectively, these observations argue for a model in which nucleocapsid maturation, involving the viral genome, capsid structure, and capsid dephosphorylation, leads to the exposure of a membrane-binding signal as a step crucial for selecting the matured nucleocapsid to be incorporated into the capsid-independent budding of virus particles.

Documentos Relacionados