Intracellular trafficking of two major Epstein-Barr virus glycoproteins, gp350/220 and gp110.

AUTOR(ES)
RESUMO

The processing and intracellular localization of the two predominant Epstein-Barr virus glycoproteins expressed in late lytic infection were investigated. Immune light or electron microscopy of frozen fixed sections revealed that gp110 colocalized to the endoplasmic reticulum and to the nuclear membrane with the endoplasmic reticulum-resident protein, heavy-chain-binding protein (BiP), while gp350/220 accumulated in low abundance in the endoplasmic reticulum and was present in higher abundance in cytoplasmic structures presumed to be Golgi and in plasma membranes. Consistent with endoplasmic reticulum and nuclear membrane localization, the bulk of gp110 was sensitive to endoglycosidase H, indicating high-mannose, pre-Golgi, N-linked glycosylation; while consistent with Golgi and plasma membrane localization, gp350/220 was mostly resistant to endoglycosidase H because of complex N- and O-linked glycosylation. gp350/220 was as abundant in extracellular enveloped virus as in the plasma membrane but was much less abundant or undetected in internal cytoplasmic or nuclear membranes. In contrast, gp110-specific antibodies did not label extracellular or intracellular virus. These data indicate that the major antigenic components of gp110 are not incorporated into or are occluded in virions and that gp350/220 is added to virus in cytoplasmic transit through a process of de-envelopment and re-envelopment at the plasma membrane or at post-Golgi vesicles. Consistent with cytoplasmic de-envelopment and re-envelopment at the plasma membrane was the finding of some free nucleocapsids in the cytoplasm of cells with intact nuclear membranes and nucleocapsids which appeared to bud through the plasma membrane.

Documentos Relacionados