Ionic control of intracellular pH in rat cerebellar Purkinje cells maintained in culture.

AUTOR(ES)
RESUMO

1. Intracellular pH (pHi) was measured in single rat cerebellar Purkinje cells maintained in primary culture using microspectrofluorescence analysis of the intracellularly trapped pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein (BCECF). 2. The ratio of the fluorescence signals measured at 530 nm in response to an alternating excitation at 450 and 490 nm was calibrated using the K(+)-H+ ionophore nigericin. This calibration gave a steady-state pHi of 7.06 +/- 0.02 (S.E.M., n = 17) when cells were perfused by a 5% CO2-25 mM-HCO3(-)-buffered solution at an external pH of 7.40 at 37 degrees C. 3. Replacement of external chloride with gluconate in the presence of bicarbonate induced a cytoplasmic alkalinization of about 0.3 pH unit. This alkalinization was independent of external sodium and was greatly reduced by 0.5 mM-DIDS, indicating the presence of a chloride-bicarbonate exchange. 4. In bicarbonate-free (HEPES-buffered) solution the steady-state pHi was 7.37 +/- 0.02 (n = 19), significantly higher than in bicarbonate-buffered solution. Recovery from an intracellular acid load brought about by the ammonium chloride pre-pulse technique was blocked by the removal of external sodium or the addition of 1.5 mM-amiloride, indicating the presence of a sodium-hydrogen exchange. 5. In bicarbonate-buffered solution pHi recovery after an acid load was also completely blocked by addition of 1.5 mM-amiloride indicating the absence of a bicarbonate-dependent acid extrusion mechanism. 6. Addition of 12-O-tetradecanoylphorbol-13-acetate (TPA, 100 nM) induced an amiloride-sensitive alkalinization of about 0.3 pH unit in bicarbonate-buffered solution but had no effect in HEPES-buffered solution. This observation suggests that in cultured Purkinje cells the sodium-hydrogen exchanger could be activated through a protein kinase C pathway only when pHi is maintained at a low physiological value by the activity of the chloride-bicarbonate exchange.

Documentos Relacionados