Isolation and characterization of herpes simplex virus type 1 host range mutants defective in viral DNA synthesis.

AUTOR(ES)
RESUMO

Cell lines were generated by cotransfection of Vero cells with pSV2neo and a plasmid containing the herpes simplex virus type 1 (HSV-1) EcoRI D fragment (coordinates 0.086 to 0.194). One such cell line (S22) contained the genes for alkaline exonuclease and several uncharacterized functions. Three mutant isolates of HSV-1 strain KOS which grew on S22 cells but not on normal Vero cells were isolated and characterized. All three mutants (hr27, hr48, and hr156) were defective in the synthesis of viral DNA and late proteins when grown in nonpermissive Vero cells. Early gene expression in cells infected with these host range mutants appeared to be normal at the nonpermissive condition. The mutations were mapped by marker rescue to a 1.5-kilobase fragment (coordinates 0.145 to 0.155). The mutation of one of these mutants, hr27, was more finely mapped to an 800-base-pair region (coordinates 0.145 to 0.151). This position of these mutations is consistent with the map location of a putative 94-kilodalton polypeptide as determined by sequence analysis (D. McGeoch, personal communication). Complementation studies demonstrated that these mutants formed a new complementation group, designated 1-36. The results presented in this report indicate that the 94-kilodalton gene product affected by these mutations may have a direct role in viral DNA synthesis.

Documentos Relacionados