Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane

AUTOR(ES)
RESUMO

The degree of freedom for lateral translational diffusion by cytochrome c oxidase and other integral proteins in the energy-transducing membrane of the mitochondrion was determined by combining the use of an immunoglobulin probe monospecific for the oxidase with thermotropic lipid phase transitions. Lateral mobility of the oxidase was monitored by observing the distribution of the immunoglobulin probe on the membrane surface by deep-etch electron microscopy and by observing the distribution of intramembrane particles (integral proteins) in the hydrophobic interior of the membrane by freeze-fracture electron microscopy. Incubation of the membrane with the immunoglobulin resulted in a time-dependent clustering of predominantly large intramembrane particles. Low temperature-induced lipid phase transitions resulted in the close packing of all intramembrane particles and cytochrome c oxidase by lateral exclusion from domains of gel-state bilayer lipid and was completely reversible. However, when cytochrome c oxidase was crosslinked through an immunoglobulin lattice prior to returning the membrane to above the lipid phase transition temperature, small intramembrane particles rerandomized while the large oxidase-related particles remained clustered. These observations reveal that cytochrome c oxidase can diffuse laterally in the energy-transducing membrane, either independently of all other integral proteins or in physical union with one or more other integral proteins. In addition, many other as yet unidentified smaller integral proteins can diffuse independently of the oxidase.

Documentos Relacionados