Loss of bovine papillomavirus DNA replication control in growth-arrested transformed cells.

AUTOR(ES)
RESUMO

The bovine papillomavirus type 1 (BPV-1) genome replicates as a plasmid within the nuclei of BPV-1-transformed murine C127 cells at a constant multiple copy number, and spontaneous amplification of the viral DNA is rarely observed. We report here that a mutant BPV-1 plasmid within a contact-inhibited C127 cell line replicated as a stable multicopy plasmid in exponentially growing cells but amplified to a high level in confluent cell culture. In situ hybridization analysis revealed that most of the mutant viral DNA amplification occurred in a minor subpopulation of cells within the culture. These consisted of giant nondividing cells with greatly enlarged nuclei, a cell form which was specifically induced in stationary-phase cultures. These observations indicated that expression of a viral DNA replication factor was cell growth stage specific. Consistent with this hypothesis, considerable amplification of wild-type BPV-1 DNA associated with characteristic giant cell formation was observed in typical wild-type virus-transformed C127 cultures following a period of growth arrest achieved by serum deprivation. Further observations indicated that induction of the giant-cell phenotype was dependent on BPV-1 gene expression and implicated a viral E1 replication factor in this process. Moreover, heterogeneity in virus genome copy numbers within the giant-cell population suggested a complex regulation of induction of DNA synthesis in these cells. It appears that this process represents a mechanism employed by the virus to ensure maximal viral DNA synthesis within a growth-arrested cell. Fundamental questions concerning the integration of the virus-cell control circuitry in proliferating and resting cells are discussed.

Documentos Relacionados