Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis.

AUTOR(ES)
RESUMO

We examined the energy requirement for maltose transport in right-side-out membrane vesicles derived from Escherichia coli. When membrane vesicles were made from strains producing tethered maltose-binding proteins by dilution of spheroplasts into phosphate buffer, those from an F0F1 ATPase-containing (unc+) strain transported maltose in the presence of an exogenous electron donor, such as ascorbate/phenazine methosulfate, at a rate of 1-5 nmol/min per mg of protein, whereas those from an isogenic unc- strain failed to transport maltose. Transport in vesicles obtained from the latter strain could be restored in the presence of electron donors if the vesicles were made to contain NAD+ and either ATP or an ATP-regenerating system. ATP hydrolysis was apparently required for transport, since nonhydrolyzable ATP analogues did not sustain transport. Maltose transport significantly increased ATP hydrolysis in ATP-containing vesicles from unc- cells. Finally, ATP-containing vesicles from unc- strains producing normal maltose-binding proteins could accumulate maltose in the absence of electron donors. These results provide convincing evidence that it is the hydrolysis of ATP that drives maltose transport, and probably also other periplasmic-binding-protein-dependent transport systems.

Documentos Relacionados