Mechanism of Inhibition of Deoxyribonucleic Acid Synthesis in Escherichia coli by Hydroxyurea

AUTOR(ES)
RESUMO

The effects of hydroxyurea on Escherichia coli B/5 physiology (increases in cell mass, number of viable cells, and deoxyribonucleic acid [DNA], RNA, and protein concentrations) were studied in an attempt to find a concentration that completely inhibits DNA synthesis and increase in number of viable cells but has little or no effect on other metabolic processes. These conditions were the most closely approached at an hydroxyurea concentration of 0.026 to 0.033 m. A concentration of 0.026 or 0.033 m was used in subsequent experiments to study the site(s) of inhibition of DNA synthesis in E. coli B/5 by hydroxyurea. Hydroxyurea at a concentration of 10−2m was found to inhibit ribonucleoside diphosphate reductase activity completely in crude extracts of E. coli. The synthesis of deoxyribonucleotides was greatly reduced when E. coli cells were grown in the presence of 0.033 m hydroxyurea. Studies on the acid-soluble DNA precursor pools showed that hydroxyurea causes a decrease in the concentration of deoxyribonucleoside diphosphates and deoxyribonucleoside triphosphates and an increase in the total concentration of ribonucleotides. Sucrose density gradient sedimentation of DNA from cells treated with 0.026 m hydroxyurea for 30 min indicated that at this concentration hydroxyurea induces no detectable single- or double-strand breaks. In addition, both replicative and repair syntheses of DNA were found to occur normally in toluene-treated cells in the presence of relatively high concentrations of hydroxyurea. Pulse-chase studies showed that deoxyribonucleotides synthesized prior to the addition of hydroxyurea to cells are utilized normally for DNA synthesis in the presence of hydroxyurea. On the basis of these observations, we have concluded that the primary, if not the only, site of inhibition of DNA synthesis in E. coli B/5 by low concentrations of hydroxyurea is the inhibition of the enzyme ribonucleoside diphosphate reductase.

Documentos Relacionados