Mechanism of the mRNA guanylyltransferase reaction: isolation of N epsilon-phospholysine and GMP (5' leads to N epsilon) lysine from the guanylyl-enzyme intermediate.

AUTOR(ES)
RESUMO

The mRNA capping reaction catalyzed by rat liver mRNA guanylyltransferase proceeds through an enzyme-GMP intermediate in which GMP is linked to the enzyme by a phosphoamide linkage. The studies described here show that GMP is bound to the epsilon-amino group of lysine of rat liver guanylyltransferase. The enzyme-[32P]GMP intermediate was digested with pronase to a [32P]GMP-peptide which was then converted to [32P]phosphoryl-peptide through periodate oxidation followed by beta-elimination. After alkaline hydrolysis of the [32P]phosphoryl-peptide, the major radioactive product co-electrophoresed with the authentic N epsilon-phospholysine on DEAE-cellulose paper. Neither [32P]Nimid-phosphohistidine nor Nguanido-phosphoarginine was detected in the hydrolysates. Furthermore, formation of N epsilon-guanylyl-lysine linkage on the enzyme was more directly shown by isolation of [32P]GMP(5' leads to N epsilon)lysine when the steps of periodate oxidation and beta-elimination were omitted. The results indicate that the nucleophile in the guanylyltransferase to which the guanylyl residue is linked is the epsilon-amino group of a lysine residue. [32P]Phosphoryl-lysine was also isolated from the vaccinia virus capping enzyme-[32P]GMP intermediate. Guanylyltransferase from HeLa cells, wheat germ, Artemia salina and yeast also formed the enzyme-GMP complex and, from the stability of the complex, the linkage between the enzyme and GMP was suggested to be a phosphoamide.

Documentos Relacionados