Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae.

AUTOR(ES)
RESUMO

A Saccharomyces cerevisiae mutant strain unable to grow at 38 C and bearing a modified methionyl-transfer ribonucleic acid (tRNA) synthetase has been studied. It has been shown that, in this mutant, the percentage of tRNAmet charged in vivo paralleled the degree of repressibility of methionine biosynthetic enzymes by exogenous methionine. On the contrary, the repression mediated by exogenous S-adenosylmethionine does not correlate with complete acylation of tRNAmet. Althought McLaughlin and Hartwell reported previously that the thermosensitivity and the defect in the methionyl-tRNA synthetase were due to the same genetic lesion (1969), no diffenence could be found in the methionyl-tRNA synthetase activity or in the pattern of repressibility of methionine biosynthetic pathway after growth at the premissive and at a semipermissive temperature. It appears that the mutant also exhibits some other modified characters that render unlikely the existence of only one genetic lesion in this strain. A genetic study of this mutant was undertaken which led to the conclusion that the thermosensitivity and the other defects are not related to the methionyl-tRNA synthetase modification. It was shown that the modified repressibility of methionine biosynthetic enzymes by methionine and the lack of acylation of tRNAmet in vivo follow the methionyl-tRNA synthetase modification. These results are in favor of the idea that methionyl-tRNAmet, more likely than methionine, is implicated in the regulation of the biosynthesis of methionine.

Documentos Relacionados