Microbial Delignification with White Rot Fungi Improves Forage Digestibility

AUTOR(ES)
RESUMO

Three wild-type white rot fungi and two cellulase-less mutants developed from Phanerochaete chrysosporium K-3 (formerly Sporotrichum pulverulentum) were tested for their ability to delignify grass cell walls and improve biodegradation by rumen microorganisms. Fungal-treated and control stems of Bermuda grass were analyzed for their content of ester- and ether-linked aromatics by using alkali extraction and gas chromatography, for in vitro dry weight digestion and production of volatile fatty acids in in vitro fermentations with mixed ruminal microorganisms, for loss of lignin and other aromatics from specific cell wall types by using microspectrophotometry, and for structural changes before and after in vitro degradation by rumen microorganisms by using transmission electron microscopy. P. chrysosporium K-3 and Ceriporiopsis subvermispora FP 90031-sp produced the greatest losses in lignin and improved the biodegradation of Bermuda grass over that of untreated control substrate. However, C. subvermispora removed the most lignin and significantly improved biodegradation over all other treatments. Phellinus pini RAB-83-19 and cellulase-less mutants 3113 and 85118 developed from P. chrysosporium K-3 did not improve the biodegradation of Bermuda grass lignocellulose. Results indicated that C. subvermispora extensively removed ester-linked p-coumaric and ferulic acids and also removed the greatest amount of non-ester-linked aromatics from plant cell walls. Microscopic observations further indicated that C. subvermispora removed esters from parenchyma cell walls as well as esters and lignin from the more recalcitrant cell walls (i.e., sclerenchyma and vascular tissues). C. subvermispora improved in vitro digestion and volatile fatty acid production by ruminal microorganisms by about 80%, while dry matter loss due to fungi was about 20% greater than loss in untreated control stems. The chemical and structural studies used identified sites of specific fungal attack and suggested mechanisms whereby improvement occurred.

Documentos Relacionados