MicroRNA-binding viral protein interferes with Arabidopsis development

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

MicroRNAs (miRNAs) are small (≈21 nt), noncoding RNAs that negatively regulate target mRNAs at the posttranscriptional level that are involved in development. In plants, virus-induced disease symptoms often result in developmental abnormalities resembling perturbation of miRNA-mediated function. Here, we report that expression in transgenic plants of a geminivirus-encoded AC4 protein from African cassava mosaic virus Cameroon Strain (ACMV), a suppressor of posttranscriptional gene silencing, was correlated with decreased accumulation of host miRNAs and increased development abnormalities in Arabidopsis. Down-regulation of miRNA correlated with an up-regulation of target mRNA level. In vitro binding assays revealed the ability of AC4 of ACMV (A-AC4) but not East African cassava mosaic Cameroon virus AC2 to bind single-stranded forms of miRNAs and short interfering RNAs but not double-stranded RNA forms. Normally, a labile intermediate during the miRNA biogenesis/RNA-induced silencing complex assembly, miRNA*, was below the level of detection, indicating that AC4 might interfere at a point downstream of the miRNA duplex unwinding process. The association of AC4 with miRNA was demonstrated by the association of A-AC4–GFP fusion protein, extracted from Arabidopsis protoplasts, with 2′-O-methyloligonucleotide complementary to miR159 (miR159*) and by the presence of miRNA with the A-AC4–GFP fusion protein after immunoprecipitation with antibody against GFP. In both assays, A-AC4 protein and miRNA complexes were copurified. These results provide direct evidence that AC4 is a unique virus-encoded posttranscriptional gene-silencing suppressor protein that binds to and presumably inactivates mature miRNAs and thus blocks the normal miRNA-mediated regulation of target mRNAs, resulting in developmental defects in Arabidopsis.

Documentos Relacionados