Mithocondrial dysfunction and gene expression are mechanism envolved in the prograssion of hypertrophy to heart failure in mice CIRSKOand PGC-1βKO / Disfunção mitocondrial e expressão gênica alterada como mecanismos envolvidos na progressão da hipertrofia para insuficiência cardíaca em camundongos CIRSKO e PGC-1βKO

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Heart failure (HF) is the end stage of different types of cardiovascular diseases and it is characterized by changes in the metabolic and myocardial contractility. We use the models cre-lox with specific knockout for insulin receptor substrate (IRS) and co-activator of PPAR (PGC-1b) (basal and pressure overload). The objective was understood the role in the dynamics of cardiac metabolism. We analyzed cardiac structure (histology and stereology), cardiac function (echocardiography and the working heart technique), metabolism (glucose uptake), hormonal action (Western Blotting), gene expression (RT-PCR) from enzyme metabolism (lipid, carbohydrates, respiratory chain, transcriptional and hypertrophic factors) and mitochondrial function. We found in CIRS12KO, severe cardiac dysfunction, mitochondrial dysfunction and reduction of gene expression. And in the PGC-1bKO when subjected to pressure overload, the progression to heart failure, with mitochondrial dysfunction, and alteration of gene expression from enzyme metabolism. The data show that changes on cardiac metabolism and gene expression in both models explain the metabolic pathways that lead to compensated hypertrophy to HF. We suggest that the mitochondrial dysfunction and the gene expression was possible mechanisms for HF. We conclude that IRS and PGC-1b are key factors of cardiac dynamics, which are essential to the structure and heart function. IRS and PGC-1b represent a promising target for limiting the transition from compensated cardiac hypertrophy to heart failure.

ASSUNTO(S)

insuficiência cardíaca irs fisiologia irs pgc-1b função mitocondrial gene expression heart failure expressão gênica pgc-1b mitochondrial function

Documentos Relacionados