Mixed valence model for superconductivity

AUTOR(ES)
FONTE

Brazilian Journal of Physics

DATA DE PUBLICAÇÃO

2003-12

RESUMO

Superconductivity often occurs in crystals with one active electron per site with charge density wave (CDW) or spin density wave (SDW) as 'mother state'. It is proposed that superconductivity is possible when the differences in equilibrium geometry and energy between the diabatic CDW and SDW states are so small that there is interaction between them via the zero point vibrations. Electron pairing in real space is directly related to oxidation states being different in two units. Three valence states in succession have to be stable (ground state or low-energy excited states) and we therefore refer to this mixed valence model as the MV-3 model. Examples are chosen from bismuthates, cuprates, and fullerides. The theory is simple and straightforward and offers solutions to other important problems as well, for example for A3C(6)0(A = K; Rb), that (1) there are no magnetic moments in crystal phase, and (2) that these systems are superconducting metals while A4C(6)0 are insulators.

Documentos Relacionados