Modeling, development of software for designing, and evaluation of drip irrigation systems with microtubes. / Modelagem, desenvolvimento de software para dimensionamento, e avaliação de sistemas de irrigação por gotejamento com microtubos.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2005

RESUMO

The use of microtubes has been increasing especially in poor countries of Asia and Africa, where international organizations struggle for the development of small farmers through the insertion of low cost technologies. Within this context and with the intention of offering technical and scientific background for the development of a low cost and high technological level irrigation, this work presented the following goals: to develop a mathematical model for microtubes design in which the localized head loss, the head loss in the microtube and the velocity head are clear in the math equation; to develop a software for microtubes design based on the proposed model; to present the costs and to verify the technical viability of the use of microtubes in two field conditions: gravity drip irrigation for vegetable gardens and pressured irrigation for orchards; and to perform hydraulic simulations to verify the temperature influence in the hydraulic performance of the systems with microtubes. The mathematical model, that considered constant the K coefficient of the localized head loss equation, can be used to represent the phenomenon of the power loss in the microtube; it represented this phenomenon better than the model that does not consider the localized head loss, therefore the localized head loss needs to be consider in the phenomenon. The software for the laterals design with microtubes provided precision and swiftness. In the field condition the irrigation system with microtubes showed good technical performance. The proposition for the use of the gravity drip irrigation system with microtubes also showed economical advantages due to the low investment cost, labor and system operation. The proposition for the use of drip irrigation with microtubes in orchards showed a cost reduction of 45.7% with laterals and emitters compared to in line emitters. In the analyzed conditions, temperature variation influenced the average discharge rate of the system. With 5ºC of increase in the water temperature, the average discharge increased in 5%, but temperature variation had little influence in water distribution uniformity, because an increase of 5ºC reduced only 1,2% in your value.

ASSUNTO(S)

software trickle irrigation drupper economice cost mathematical model irrigação localizada modelo matemático hydraulic simulation custo econômico hidráulica aplicada – simulação gotejador software

Documentos Relacionados