Molecular Analysis of Multiple Mutator-Derived Alleles of the Bronze Locus of Maize

AUTOR(ES)
RESUMO

Very few mutations derived from Mutator maize lines have been studied at the molecular level. The variety of Mu elements that can induce mutations, the relative frequency of mutant induction by insertion of a given class of Mu elements or by a Mu-induced genomic rearrangement, a possible intragenic insertion site specificity, and the molecular nature of reversion events are all unknown in the Mutator system. To address these questions, we have isolated several partially or fully inactivated bronze alleles from Mutator maize lines and structurally characterized them by gel blot hybridization of genomic DNA. The mutations were induced in three parental Bronze alleles which differ by polymorphisms flanking the coding region. Each of the 14 inactivated bronze mutants characterized was found to contain an insert which cross-hybridized with the transposable element Mu1. Detailed maps of 11 of these alleles revealed a 1.4-kb insert with restriction sites characteristic of Mu1. These Mu1 insertions were found dispersed throughout both of the Bronze exons and in either orientation relative to Bronze transcription. Stable and somatically unstable (mutable) mutant alleles differed with respect to the covalent modification of restriction sites within the inserted Mu1 element. Several germinal revertants of one mutable bronze allele, bzMum4, were isolated. These all were associated with excision of the Mu1 element from the affected locus.

Documentos Relacionados