Molecular characterization of cell cycle gene CDC7 from Saccharomyces cerevisiae.

AUTOR(ES)
RESUMO

The product of the CDC7 gene of Saccharomyces cerevisiae appears to have multiple roles in cellular physiology. It is required for the initiation of mitotic DNA synthesis. While it is not required for the initiation of meiotic DNA replication, it is necessary for genetic recombination during meiosis and for the formation of ascospores. It has also been implicated in an error-prone DNA repair pathway. Plasmids capable of complementing temperature-sensitive cdc7 mutations were isolated from libraries of yeast genomic DNA in the multicopy plasmid vectors YRp7 and YEp24. The complementing activity was localized within a 3.0-kilobase genomic DNA fragment. Genetic studies that included integration of the genomic insert at or near the CDC7 locus and marker rescue of four cdc7 alleles proved that the cloned fragment contains the yeast chromosomal CDC7 gene. The RNA transcript of CDC7 is about 1,700 nucleotides. Analysis of the nucleotide sequence of a 2.1-kilobase region of the cloned fragment revealed the presence of an open reading frame of 1,521 nucleotides that is presumed to encode the CDC7 protein. Depending on which of two possible ATG codons initiates translation, the calculated size of the CDC7 protein is 58.2 or 56 kilodaltons. Comparison of the predicted amino acid sequence of the CDC7 gene product with other known protein sequences suggests that CDC7 encodes a protein kinase.

Documentos Relacionados