Molecular characterization of phycobilisome regulatory mutants of Fremyella diplosiphon.

AUTOR(ES)
RESUMO

Three classes of pigment mutants were generated in Fremyella diplosiphon in the course of electroporation experiments. The red mutant class had high levels of phycoerythrin in both red and green light and no inducible phycocyanin in red light. Thus, this mutant behaved as if it were always in green light, regardless of light conditions. Blue mutants exhibited normal phycoerythrin photoregulation, whereas the inducible phycocyanin was present at high levels in both red- and green-light-grown cells. Furthermore, the absolute amount of allophycocyanin was increased threefold in comparison with our wild-type strain. Green mutants lost the capacity to accumulate phycoerythrin in green light but showed normal photoregulation of phycocyanin. Analyses of transcript abundance in these mutants demonstrated that changes in the levels of the different phycobilisome components correlated with changes in the levels of mRNAs encoding those components. The characterization of these mutants supports hypotheses previously discussed concerning molecular mechanisms involved in the regulation of the phycobiliprotein gene sets during chromatic adaptation.

Documentos Relacionados