Mutations in the major DNA-binding protein gene of herpes simplex virus type 1 result in increased levels of viral gene expression.

AUTOR(ES)
RESUMO

We have examined the effect of temperature-sensitive mutations in the herpes simplex virus 1 DNA-binding protein gene on viral gene expression. We have found that at the nonpermissive temperature, the synthesis of certain immediate early, early, and late viral polypeptides was greater in cells infected with the temperature-sensitive mutants than in cells infected with the wild-type virus. This effect was independent of the requirement for this viral protein for viral DNA replication. The altered rate of synthesis of viral proteins was due to a thermolabile gene product. Cells infected with these mutants at the permissive temperature and then shifted to the nonpermissive temperature exhibited enhanced levels of viral gene expression. The addition of actinomycin D at the time of the temperature shift prevented the alteration in viral protein synthesis. Therefore, continuing transcription is required for this change in gene expression. Northern blot analysis of cytoplasmic RNA showed that the steady-state level of specific viral transcripts expressed from parental virus genomes was greater in cells infected by these mutants at the nonpermissive temperature. These results indicate that the major DNA-binding protein of herpes simplex virus type 1 acts as a negative regulator of viral gene expression by affecting the abundance of cytoplasmic viral mRNAs.

Documentos Relacionados