Native and recombinant herpes simplex virus type 1 envelope proteins induce human immune T-lymphocyte responses.

AUTOR(ES)
RESUMO

The abilities of whole herpes simplex virus type 1 (HSV-1) antigen (HSV-ag) and purified HSV-1 native and recombinant envelope proteins to stimulate in vitro T-lymphocyte responses were compared in patients with recurrent herpes labialis. Immunochemically purified preparations of native glycoproteins B, C, and D (ngB, ngC, ngD) from cultured HSV-1 as well as expressed recombinant plasmid preparations of gD (rgD-1t, rgD-45K) elicited lymphocyte proliferation (LT) and production of gamma interferon (IFN-gamma) and interleukin-2 (IL-2) only in seropositive individuals. The IFN-gamma induced by rgD-1t correlated with the time to the next herpetic lesion in 19 volunteers followed to recurrence (r = 0.69, P less than 0.008), although the magnitude and frequency of LT and IFN-gamma responses were lower with either recombinant or native purified antigens than with the whole-virus antigen. Combinations of ngB plus ngD or ngB plus ngC plus ngD stimulated more IFN-gamma, equivalent to whole-virus-antigen responses. Recombinant-derived human IL-2 also specifically increased LT and IFN-gamma responses in antigen-driven cultures. ngD stimulated IL-2 and LT responses similar to those of whole-virus antigen and higher than those of ngC. HSV-ag and ngB induced significantly higher titers of total IFN than could be accounted for by IFN-gamma; this was not seen for the other antigens, which induced only IFN-gamma. HSV-ag-driven Leu 2a-, plastic-nonadherent blood cells, unlike whole peripheral blood mononuclear cells, showed evidence of an increase and then a decline in the frequency of HSV-responsive cells after a lesion recurrence. These studies suggest that HSV-1 envelope proteins are capable of stimulating an immune T-helper-cell response which is associated with the prevention of human herpes simplex lesion recurrence. Although the whole virus probably contains additional important antigens, increasing concentrations or combinations of certain purified glycoproteins or the addition of nonspecific enhancers of T-lymphocyte function can drive in vitro immune responses to the same level as the complete set of viral antigens.

Documentos Relacionados