New applications of photothermal techniques for studying interfaces. / Novas aplicações de técnicas fototérmicas para o estudo de interfaces.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2001

RESUMO

This work presents the development of new instrumentations based on photothermal phenomena to study solid-liquid and liquid-gas interfaces, including in the latter the effect of surfactants. The work is divided into chapters, each one focusing on the development and/or application of a new technique. Chapter I presents an introduction to photothermal phenomena and describes the construction of classical Thermal Lens (TL) instruments in the single and double-beam configurations. Solid-liquid interfaces were studied in chapters II-IV using variations of the classical TL instrumentation. A new photothermal signal was characterized, indicating the formation of an inverted thermal lens at the interface. Z-scan experiments in the reflection configuration were used to determine the change in the refractive index of an interface close to the critical angle, and a similar methodolody was used to measure the thermal diffusivity of opaque samples. In Chapters V-VII, the deformation of liquid surfaces was studied by laser-induced Marangoni effect and the generation of capillary waves. Heat transfer through the liquid-gas interface was monitored by Transverse Photothermal Deflection. In all cases, the influence of surfactants was studied by forming a monolayer on the surface of the liquids. It was observed that a tiny amount of surfactants was able to cease the motion of liquid induced by surface tension gradients and to increase significantly the heat transfer through the interface. The results indicate a correlation between phase transitions of the monolayers and the attenuation of the surface deformation as well as the increase in the heat transfer. Finally, chapter VIII is a collection of other works that derived from the studies related to the instrumentations developed.

ASSUNTO(S)

mirage effect laser interfaces deflection surfactants deflexão surfactantes efeito miragem ondas capilares capillary waves marangoni lente térmica thermal lens

Documentos Relacionados