Noise analysis of ion channels in non-space-clamped cables: estimates of channel parameters in olfactory cilia.

AUTOR(ES)
RESUMO

Ion channels in the cilia of olfactory neurons are part of the transduction machinery of olfaction. Odorant stimuli have been shown to induce a biphasic current response, consisting of a cAMP-activated current and a Ca(2+)-activated Cl- current. We have developed a noise analysis method to study ion channels in leaky cables, such as the olfactory cilium, under non-space-clamp conditions. We performed steady-state noise analysis on ligand-induced currents in excised cilia, voltage-clamped at input and internally perfused with cAMP or Ca2+. The cAMP-activated channels analyzed by this method gave results similar to those of single-channel recordings (gamma = 8.3 pS). Single-channel currents have not yet been recorded for the Ca(2+)-activated Cl- channels. Using our noise analysis method, we estimate a unit conductance, gamma = 0.8 pS, for these channels. The density of channels was found to be approximately 70 channels/micron2 for both channel species.

Documentos Relacionados