Nuclear Mutants of Maize with Defects in Chloroplast Polysome Assembly Have Altered Chloroplast RNA Metabolism.

AUTOR(ES)
RESUMO

The molecular basis for the photosynthetic defect in four nuclear mutants of maize was investigated. Mutants hcf7, cps1-1, cps1-2, and cps2 contained reduced levels of many chloroplast-encoded proteins without corresponding deficiencies in chloroplast mRNAs. Many chloroplast mRNAs were associated with abnormally few ribosomes, indicating that the protein deficiencies were due to global defects in chloroplast translation. These mutants were used to study the effects of reduced ribosome association on the metabolism of chloroplast RNAs. The level of the rbcL mRNA was reduced fourfold in each mutant, but was unaltered in other nonphotosynthetic mutants with normal chloroplast translation. These results suggest that the rbcL mRNA is destabilized as a consequence of its decreased association with ribosomes. The fact that many other chloroplast mRNAs accumulated to normal levels demonstrated that a decreased association with ribosomes does not significantly alter their stabilities or processing. hcf7 seedlings had a gross defect in the processing of the 16S rRNA: the primary lesion in this mutant may be a defect in 16S rRNA processing itself.

Documentos Relacionados