Nuclear Mutation Inhibits Expression of the Chloroplast Gene That Encodes the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.

AUTOR(ES)
RESUMO

Chlamydomonas reinhardtii mutant 76-5EN was recovered as a light-sensitive, acetate-requiring strain that failed to complement a chloroplast structural gene mutant of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Further genetic analysis revealed that the new mutation was inherited in a mendelian pattern, indicating that it resides within the nucleus. The 76-5EN mutant lacks Rubisco holoenzyme but has wild-type levels of whole-chain electron transport activity and chlorophyll. During a 1-min pulse labeling with 35SO42-, little or no Rubisco large-subunit synthesis occurred in the mutant. Nuclear-encoded small subunits were synthesized to a normal level and were subsequently degraded. When analyzed by northern hybridization, the 76-5EN mutant was found to have a decreased level of large-subunit mRNA. Large-subunit mRNA synthesis also appeared to be reduced during a 10-min pulse labeling with [32P]orthophosphate, but the labeled mRNA was stable during a 1-h chase. These results indicate that a nuclear gene mutation specifically disrupts the accumulation of large-subunit mRNA within the chloroplast. A deeper understanding of the nature of the 76-5EN gene may be useful for manipulating the expression of the agronomically important Rubisco enzyme.

Documentos Relacionados