Nucleoside triphosphate-dependent DNA-binding properties of mos protein.

AUTOR(ES)
RESUMO

We have previously shown that the mos gene product, p40mos, produced in Escherichia coli binds ATP and has ATPase activity. In the present study, we investigated the DNA-binding properties of p40mos and two mos deletion mutant proteins. Nitrocellulose blot protein-DNA binding assays showed that p40mos binds DNA in the presence of Mg2+-ATP and certain other nucleoside triphosphates. Ninety percent of the p40mos-bound DNA is dissociated if the complex is washed in the presence of 1 M NaCl or in the absence of ATP. p40mos-DNA binding is not observed in the presence of AMP or the nonhydrolyzable ATP analog adenosine 5'-[beta, gamma-methylene]-triphosphate; however, in the presence of ADP, p40mos binds DNA at 20% of the level that is observed with ATP. An N-terminal-deletion mutant protein, p19mos, has no DNA-binding activity, whereas a C-terminal-deletion mutant protein, p25mos, does. p25mos contains the ATP-binding domain, binds DNA in the presence of either ADP or ATP, and shows 5% and 45% binding (relative to that in the presence of ATP) in the presence of AMP and adenosine 5'-[beta, gamma-methylene]triphosphate, respectively. These results suggest that the N-terminal domain of p40mos is responsible for nucleoside triphosphate-mediated DNA binding. We also observed differential histone-DNA binding in the presence and absence of ATP.

Documentos Relacionados