Nucleotidase Cascades Are Catalyzed by Secreted Proteins of the Parasitic Nematode Trichinella spiralis

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Extracellular nucleotides are signaling molecules whose receptor-mediated effects are involved in a variety of physiological responses in mammalian tissues. An overwhelming body of data indicate that inflammatory and other immune responses can be modulated by the availability and local concentrations of nucleotides via nucleotide receptor signaling, but this is only just beginning to be investigated in the context of infectious disease. Evidence is provided here that the parasitic nematode Trichinella spiralis can catalyze the conversion and thus modulate both the availability and concentration of extracellular nucleotides by means of the following secreted exoenzymes: apyrase, 5′-nucleotidase, and adenosine deaminase. These enzymes were characterized in terms of substrate specificity, kinetic behavior, pH, divalent cation preferences, and response to a series of compounds. The secreted 5′-nucleotidase was identified as a protein with an apparent molecular mass of 67 kDa after N-terminal amino acid sequencing of the purified protein. The presence of adenosine deaminase was confirmed in the secreted products by Western blotting with an antibody against a mammalian enzyme, as a protein with an apparent molecular mass of 38 kDa. These secreted proteins constitute an enzymatic cascade which catalyzes the degradation of extracellular nucleotides, with a potential physiological role in the regulation of purinergic signaling.

Documentos Relacionados