O líquido de spin isolante no modelo de Hubbard bidimensional levemente dopado

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

Our main goal here is to analyze the low-energy properties of the two-dimensional (2d) Hubbard model slightly away from half-lling from a renormalization group point of view within the two-loop approximation. We will develop this technique adapting it conveniently to our problem at hand. As a warm-up test for our approach, we will apply the same methodology to the one-dimensional (1d) Hubbard model away from half-lling. As a result, we will show that this technique reproduces correctly the low-energy physics of the system, and the model is indeed described by the so-called Luttinger liquid. Next, we move on to the 2d problem. In this latter case, in a weak-coupling regime, we will observe that this model seems to be well described by Fermi liquid theory with quasiparticles adiabatically connected to the electrons in the noninteracting case. On the other hand, in an intermediate interacting regime, we will argue that our results are consistent with the interpretation of an insulating spin liquid (ISL) formation in the system with gaps in both charge and spin excitation spectra. This state would be an interesting example of a Non-Fermi liquid in 2d, since it cannot be associated to any spontaneously broken continuous symmetry due to the interactions present in the model. Consequently, it should have only short-range order. Finally, we will suggest that this latter result could be potentially relevant for describing the physics of the underdoped regime of the high-Tc cuprate superconductors, and the pseudogap phase observed in these systems could be interpreted in terms of an ISL.

ASSUNTO(S)

grupo de renormalização elétrons fortemente correlacionados fisica líquido de spin

Documentos Relacionados