Organizational analysis of elav gene and functional analysis of ELAV protein of Drosophila melanogaster and Drosophila virilis.

AUTOR(ES)
RESUMO

Drosophila virilis genomic DNA corresponding to the D. melanogaster embryonic lethal abnormal visual system (elav) locus was cloned. DNA sequence analysis of a 3.8-kb genomic piece allowed identification of (i) an open reading frame (ORF) with striking homology to the previously identified D. melanogaster ORF and (ii) conserved sequence elements of possible regulatory relevance within and flanking the second intron. Conceptual translation of the D. virilis ORF predicts a 519-amino-acid-long ribonucleoprotein consensus sequence-type protein. Similar to D. melanogaster ELAV protein, it contains three tandem RNA-binding domains and an alanine/glutamine-rich amino-terminal region. The sequence throughout the RNA-binding domains, comprising the carboxy-terminal 346 amino acids, shows an extraordinary 100% identity at the amino acid level, indicating a strong structural constraint for this functional domain. The amino-terminal region is 36 amino acids longer in D. virilis, and the conservation is 66%. In in vivo functional tests, the D. virilis ORF was indistinguishable from the D. melanogaster ORF. Furthermore, a D. melanogaster ORF encoding an ELAV protein with a 40-amino-acid deletion within the alanine/glutamine-rich region was also able to supply elav function in vivo. Thus, the divergence of the amino-terminal region of the ELAV protein reflects lowered functional constraint rather than species-specific functional specification.

Documentos Relacionados