Osmotic Fragility and Viability of Lysostaphin-induced Staphylococcal Spheroplasts

AUTOR(ES)
RESUMO

When Staphylococcus aureus FDA 209P cells were treated with lysostaphin (1 unit/ml) in hypertonic sodium chloride or sucrose environments, viable, osmotically fragile spheroplasts were produced. Turbidimetric studies indicated that 64% (w/v) sucrose or 20 to 28% (w/v) sodium chloride gives maximal protection against lysis of the lysostaphin-treated cells. The NaCl appeared to give greater protection than the sucrose and proved to be much more suitable for viability and related studies. Viability of both shocked and nonshocked treated cells was determined by S. aureus colony counts on agar plates overlayered with the test dilution of the cells suspended in 4 ml of semisolid agar containing 72% sucrose. The difference in the counts represented the number of revertible spheroplasts. Under these conditions, 30 to 50% of the test cells were recovered as osmotically fragile, but revertible, spheroplasts after 5 to 10 min of exposure to lysostaphin in 24% NaCl. This rewere obtained after 5 to 10 min of exposure to lysostaphin in 24% NaCl. This recovery rate fell off rapidly with prolonged exposure. In view of residual turbidity of 30- and even 60-min exposure preparations, it appeared probable that most of the osmotically fragile cells were eventually converted to protoplasts by the prolonged lysostaphin treatment. Osmotically fragile cells were converted to osmotic stability by fixation with 4% (v/v) Formalin.

Documentos Relacionados