Outer membrane mutants of Salmonella typhimurium LT2 have lipopolysaccharide-dependent resistance to the bactericidal activity of anaerobic human neutrophils.

AUTOR(ES)
RESUMO

The capacity of neutrophil polymorphonuclear granulocytes (PMNs) to phagocytize bacteria under anaerobic as well as aerobic conditions afforded the opportunity to compare the bactericidal activities of oxygen-independent and oxygen-dependent antimicrobial mechanisms in human PMNs challenged with Salmonella typhimurium LT2 and its lipopolysaccharide mutants (outer membrane mutants). Anaerobic human PMNs challenged with either opsonized LT2 or serum-treated zymosan failed to produce detectable superoxide anion (O2-) or to reduce nitroblue tetrazolium, although aerobic PMNs readily produced O2- in response to such challenge. Anaerobic PMNs killed these bacteria in an ordered fashion that appeared to be dependent on their lipopolysaccharide chemotype. As the carbohydrate content of the mutant lipopolysaccharide decreased, the bacteria became less resistant to the oxygen-independent bactericidal activity. The results resembled the ordered resistance to oxygen-independent killing observed with LT2 and its mutants in PMN-free systems with PMN granule proteins. Studies on the kinetics of killing showed these to be less rapid in anaerobic as compared with aerobic conditions. Opsonization increased the rate of phagocytosis, but such factors as opsonization and the rate of phagocytosis did not appear to affect intraleukocytic bactericidal capacity in that the resultant proportion of bacteria remaining viable after ingestion was similar regardless of which serum was used (normal serum, C6-deficient serum, C8-deficient serum, or no serum at all). The results are consistent with an active and substantial participation by oxygen-independent systems in the antimicrobial effects of neutrophils.

Documentos Relacionados