Overexpression of protein kinase C beta 1 enhances phospholipase D activity and diacylglycerol formation in phorbol ester-stimulated rat fibroblasts.

AUTOR(ES)
RESUMO

We are using a Rat-6 fibroblast cell line that stably overexpresses the beta 1 isozyme of protein kinase C (PKC) to study regulation of phospholipid hydrolysis by PKC. Stimulation of control (R6-C1) or overexpressing (R6-PKC3) cells with phorbol ester results in an increase in diacylglycerol (DAG) mass with no increase in inositol phosphates, indicating that DAG is not formed by inositol phospholipid breakdown. A more dramatic DAG increase occurs in R6-PKC3 cells (4.0-fold over basal) compared to R6-C1 cells (1.5-fold over basal). To further define the source of DAG, phosphatidylcholine (PC) pools were labeled with [3H]myristic acid or with [3H]- or [32P]alkyllyso-PC and formation of labeled phosphatidylethanol, an unambiguous marker of phospholipase D activation, was monitored. Phorbol ester-stimulated phosphatidylethanol formation is 5-fold greater in the R6-PKC3 cell line. Formation of radiolabeled phosphatidic acid (PA) is also enhanced by PKC overexpression. In cells double-labeled with [3H]- and [32P]-alkyl-lysoPC, the 3H/32P ratio of PA and PC are identical 15 min after stimulation, suggesting that a phospholipase D mechanism predominates. In support of this, the PA phosphohydrolase inhibitor propranolol decreased phorbol 12-myristate 13-acetate-stimulated DAG formation by 72%. Increases in DAG and phosphatidylethanol were inhibited by the PKC inhibitors K252a and staurosporine. These results indicate that phospholipase D is regulated by the action of PKC. Enhanced phospholipase D activity may contribute to the growth abnormalities seen in PKC-overexpressing cells.

Documentos Relacionados