Overexpression, purification, and late transcription factor activity of the 17-kilodalton protein encoded by the vaccinia virus A1L gene.

AUTOR(ES)
RESUMO

The A1L, A2L, and G8R open reading frames (ORFs) were previously shown by transfection assays to encode transactivators of late gene expression. We now present evidence that the 17-kDa protein product of the A1L gene can function in vitro as a transcription factor. Simultaneous overexpression of the transactivators was achieved by coinfecting HeLa cells with one recombinant vaccinia virus that encodes the bacteriophage T7 RNA polymerase and three recombinant vaccinia viruses that contain copies of A1L, A2L, and G8R ORFs regulated by T7 promoters. Extracts from the recombinant virus-infected cells exhibited greatly enhanced late in vitro transcription activity and served as a source of factors. The 17-kDa product of the A1L ORF represented approximately 8% of the ammonium sulfate-precipitated cell protein and copurified with a late transcription factor activity. The transcription factor activity could be specifically immunodepleted with immobilized antibody to the bacterially expressed A1L-encoded protein, providing additional evidence for its identity and role. A sequence encoding six consecutive histidines was added to the A1L ORF, which was then incorporated into the genome of a baculovirus expression vector. The 17-kDa protein, synthesized in insect cells and purified by binding to an Ni(2+)-chelating affinity column, could replace the vaccinia virus-overexpressed 17-kDa protein in transcription assays. In addition to the 17-kDa product of the A1L gene, which was named vaccinia virus late transcription factor 2, the proteins that stimulate specific transcription of late promoter-regulated templates included the viral multisubunit RNA polymerase, vaccinia virus late transcription factor 1 (the product of the G8R ORF), and at least one other partially purified protein.

Documentos Relacionados