OXIDATIVE METABOLISM AND THE GLYOXYLATE CYCLE IN PSEUDOMONAS INDIGOFERA

AUTOR(ES)
RESUMO

McFadden, Bruce A. (Washington State University, Pullman, Wash.) and William V. Howes. Oxidative metabolism and the glyoxylate cycle in Pseudomonas indigofera. J. Bacteriol. 84:72–76. 1962.—Oxidative patterns of Pseudomonas indigofera have been investigated. Intact cells oxidize acetate, ethanol, fumarate, glyoxylate, α-ketoglutarate, malate, oxaloacetate, pyruvate, and succinate to greater than 35% of completion. Isocitrate is oxidized to 21% of completion. Citrate is not oxidized by whole cells but is oxidized by cell-free preparations, as are fumarate, isocitrate, malate, and succinate. These patterns are suggestive of the operation of the tricarboxylic acid cycle. Investigations of levels of isocitrate lyase and malate synthase as functions of growth substrate have been conducted. Assays for these enzymes in “soluble” preparations were performed under ostensibly optimal conditions for catalysis. Growth substrates used at 0.3% were: (i) ethanol, (ii) glucose, (iii) succinic acid, and (iv) yeast extract. Specific activities of isocitrate lyase were: for (i) 3.80, (ii) 0.61, (iii) 1.47, and (iv) 1.33; activities of malate synthase were: for (i) 0.18, (ii) 0.032, (iii) 0.021, and (iv) 0.029. Additionally, the isocitrate lyase level from butyrate-grown cells was similar to that for ethanol-grown cells; the specific activity of malate synthase was about 60% as high. Specific activities of these enzymes were reproducible when conditions of sonic disruption were standardized. Longer durations of disruption decreased both activities.

Documentos Relacionados