P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport

AUTOR(ES)
FONTE

American Society for Clinical Investigation

RESUMO

Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl– secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K+ channels. We therefore speculated that a basolateral P2Y6 receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y6 receptor using crypt [Ca2+]i measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y6elevates cAMP, we coexpressed the P2Y1 or P2Y6 receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl– currents. In oocytes expressing the P2Y1 receptor, ATP transiently activated the endogenous Ca2+-activated Cl– current, but not CFTR. In contrast, in oocytes expressing the P2Y6receptor, UDP transiently activated the Ca2+-activated Cl– current and subsequently CFTR. CFTR Cl– currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y6 receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca2+]i and cAMP. In support of these data P2Y6 receptor stimulation differentially activates CFTR in Xenopus oocytes.

Documentos Relacionados