Padronização da expressão heterologa e de modelo de ensaio de atividade para a proteina quinase humana S6K / Standardization of the heterologous expression and of a model assay of activity for the human protein kinase S6K

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

The 70kDa ribosomal S6 protein kinase 1 (S6K1) is a phosphoprotein involved in the regulation of genes related to translational control in mammals. S6K1 shows distinct nuclear (a1) and cytoplasmic (a2) forms. Phosphorylation of the S6K1 best characterized target, the protein of the small ribosomal subunit (RPS6), has been generally associated to the selective recruitment of the 5 -TOP mRNAs (5 tract of oligopyrimidine) by the translational machinery, although there is still some controversy on this issue. Due to the function of its targets, S6K1 has been implicated in several cellular processes including cell growth, cancer and insulin resistance. S6K1 is activated by a mechanism of sequential phosphorylation following activation of the mTORC1 (mammalian target of rapamycin complex 1) and PI3K (phosphoinositide-3-kinase) pathways. As a kinase of the AGC family, S6K1 activation requires mTORC1 phosphorylation of residue Thr389 of the hydrophobic domain followed by PDPK1 (phosphoinositide dependent protein kinase 1) phosphorylation of residue Thr229 at the T loop of the catalytic domain. These take place only after phosphorylation by mTORC1 of several residues of the autoinhibitory C-terminal domain. The objective of this work was to develop an assay to analyze the function of S6K1 in vitro and use it as a tool in the discovering of the functions of regulators proteins of the mTOR cascade in interactions with S6K1. For these purposes, expression systems were constructed to produce the various recombinant proteins to be used in the interaction and activity assays. Several genetic constructions were tested in Escherichia coli for the production of GST-S6K1a1-His6, GST-S6K1a2-His6 and GST-S6K1a2T389E?CT (a2 form of S6K1 with the T389E substitution and truncated carboxiterminus), GST-PDPK1 and GST-CDPDPK1 (GST fusion protein of the catalytic domain of PDPK1). The truncated forms were expressed more efficiently in E. coli. Although the yield in E. coli was lower than expected, it was sufficient to perform interaction assays. The C-terminal domain of RPS6, a substrate for S6K1, was successfully expressed in E. coli as a fusion protein with the phage ? protein D. Subsequently, expression systems for production of His6-S6K1a2T389E?CT and His6-CDPDPK1 in insect cells were constructed using baculovirus vectors. It was found that these constructs are expressed in the form of phosphoproteins in insect cells. GST pull-down assays using GST-S6K1a2-His6 e GST-S6K1a2T389E?CT to test interaction with the PP2AC isoforms His6-PP2ACa(major) and His6-PP2ACa(minor) revealed that His6-PP2ACa(major) does not interact with GST-S6K1a2-His6, although it interacts strongly with GST-S6K1a2T389E?CT. On the other hand, His6-PP2ACa(minor) interacts weakly with both GST- S6K1a2-His6 and GST-S6K1a2T389E?CT. This finding suggests that the unphosphorylated C-terminal of S6K1a2 inhibits interaction with PP2ACa(major). His6-PP2ACa(minor) behaves differently form His6-PP2ACa(major). Its interaction with S6K1a2 seems to be independent of the C-terminal since the amounts of S6K1a2T389E?CT and S6K1a2 that interact with His6-PP2ACa(minor) are similar. Future work in vivo is required to confirm these results. GST pull-down assays confirmed that a4 does not interact with the constructions of S6K1, while TIPRL1 interacts with them. If confirmed in vivo, these results provides a new perspective for the coordinated regulation between mTOR1 and PP2A, which apparently involves also TIPRL1. The genetic constructions and expression systems established in this work allow the production of the reagents required to study the mechanism of S6K1 regulation mediated by adaptor proteins. They will also allow the development of experiments such as screening for specific S6K1 inhibitors, which depend on reconstitution of S6K1 activity assays using activated S6K1. Nevertheless, the activity assay performed did not yield satisfactory outcomes and must be improved

ASSUNTO(S)

teste imunoenzimatico immunoenzyme technique recombinant proteins expressão heteróloga s6k recombinant protein heterologous expression proteinas recombinantes proteina recombinante s6k proteina quinase humana human rotein quinase

Documentos Relacionados