Paraffin Oxidation in Pseudomonas aeruginosa II. Gross Fractionation of the Enzyme System into Soluble and Particulate Components

AUTOR(ES)
RESUMO

Osmoplast production in Pseudomonas aeruginosa was investigated to obtain osmotically sensitive cells for studies on the subcellular location of the paraffin-oxidizing enzyme system. It proved possible to convert cells of P. aeruginosa treated with lysozyme and ethylenediaminetetraacetic acid in tris(hydroxymethyl)aminomethane-sucrose buffer (pH 8) into osmotically sensitive cells within 2 min. Active, cell-free preparations were obtained by the subsequent osmotic disruption in the presence of deoxyribonuclease and magnesium chloride. The conditions necessary for a complete separation of membranes and soluble cell constituents were established by following the distribution of two reference enzymes. An enzyme assay based on direct gas chromatographic analysis of the oxidation products from n-heptane is described for the paraffin-oxidizing enzyme system. By using this method, we investigated the enzymatic organization and subcellular distribution of the paraffin-oxidizing enzyme system. It was confirmed that the enzyme system is composed of three components, each of which is indispensable for the hydroxylation of n-heptane. One of these components, the hydroxylase, was located in two cell fractions; the other two components occur exclusively in the soluble cell fraction. The half-life of a crude enzyme preparation kept at ambient temperature is approximately 3.5 hr. This poor stability was found to be primarily due to the instability of one of the soluble factors, presumably the reduced nicotinamide adenine dinucleotide-rubredoxin reductase.

Documentos Relacionados