Partially transformed, anchorage-independent human diploid fibroblasts result from overexpression of the c-sis oncogene: mitogenic activity of an apparent monomeric platelet-derived growth factor 2 species.

AUTOR(ES)
RESUMO

A human c-sis cDNA in an expression vector was introduced into human diploid fibroblasts by transfection or electroporation. Fibroblast clones showing an aberrant, densely packed colony morphology were isolated and found to overexpress a 3.6-kilobase sis mRNA species and associated immunoprecipitable platelet-derived growth factor (PDGF) 2 proteins. Parallel analyses in cell clones of sis mRNA expression and colony formation in agar indicated that, above a threshold, a linear, positive correlation existed between sis overexpression and acquired anchorage independence. The sis-overexpressing cells formed transient, regressing tumor nodules when injected into nude mice, consistent with the finite life span which they retained. Protein products generated from the transfected c-sis construct in two overexpressing clones were immunoprecipitated with anti-human PDGF antibodies. One clone contained an apparent PDGF dimer of 21 kilodaltons; the second clone contained only an apparent PDGF monomer of 12 kilodaltons, which was shown to account for all of the mitogenic activity present in the cells, essentially all of which was concentrated in the membrane fraction. The results demonstrate a clear link between sis overexpression and acquisition of a partially transformed, anchorage-independent phenotype, and when combined with previous observations of sis overexpression in human tumors, clearly implicate sis overexpression as a genetic mechanism which contributes to human cell transformation.

Documentos Relacionados