Partition coefficient of a surfactant between aggregates and solution: application to the micelle-vesicle transition of egg phosphatidylcholine and octyl beta-D-glucopyranoside.

AUTOR(ES)
RESUMO

The mechanism of the solubilization of egg phosphatidylcholine containing 10% (M/M) of egg phosphatidic acid unilamellar vesicles by the nonionic detergent, octyl beta-D-glucopyranoside, has been investigated at both molecular and supramolecular levels by using fluorescence and turbidity measurements. In the lamellar region of the transition, the solubilization process has been shown to be first a function of the initial size before reaching an equilibrium aggregation state at the end of this region (the onset of the micellization process). The analysis during the solubilization process of the evolution of both the fluorescence energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-phosphatidylethanolamine (NBD-PE) and N-(lissamine rhodamine B sulfonyl)-phosphatidylethanolamine (Rho-PE) and the fluorescence of 6-dodecanoyl-2-dimethylaminoaphtalene (Laurdan) has allowed us to determine the evolution of the detergent partitioning between the aqueous and the lipidic phases, i.e., the evolution of the molar fraction of OG in the aggregates (XOG/Lip) with its monomeric detergent concentration in equilibrium ([OG]H2O), throughout the vesicle-to-micelle transition without isolating the aqueous medium from the aggregates. The curve described by XOG/Lip versus [OG]H2O shows that the partition coefficient of OG is changing throughout the solubilization process. From this curve, which tends to a value of 1/(critical micellar concentration), five different domains have been delimited: two in the lamellar part of the transition (for 0 < [OG]H2O < 15.6 mM), one in the micellization part, and finally two in the pure micellar region (for 16.5 < [OG]H2O < 21 mM). The first domain in the lamellar part of the transition is characterized by a continuous variation of the partition coefficient. In the second domain, a linear relation relates XOG/Lip and [OG]H2O, indicating the existence of a biphasic domain for which the detergent presents a constant partition coefficient of 18.2 M-1. From the onset to the end of the solubilization process (domain 3), the evolution of (XOG/Lip) with [OG]H2O can be fitted by a model corresponding to the coexistence of detergent-saturated lamellar phase with lipid-saturated mixed micelles, both in equilibrium with an aqueous phase, i.e., a three-phase domain. The micellar region is characterized first by a small two-phase domain (domain 4) with a constant partition coefficient of 21 M-1, followed by a one-phase mixed-micellar domain for which XOG/Lip no longer linearly depends on [OG]H2O. The results are discussed in terms of a phase diagram.

Documentos Relacionados