Pentoxifylline and CD14 antibody additively inhibit priming of polymorphonuclear leukocytes for enhanced release of superoxide by lipopolysaccharide: possible mechanism of these actions.

AUTOR(ES)
RESUMO

Lipopolysaccharide (LPS) primes human polymorphonuclear leukocytes (PMN) for enhanced O2- production in response to stimulation by N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe). Serum factor is essential for priming at lower concentrations of LPS. Complexes of LPS and LPS-binding protein are recognized by CD14 on PMN. We investigated the effects of a monoclonal antibody against CD14 (MY4) and of pentoxifylline (POF), a membrane fluidizer, alone and in combination, on LPS-LPS-binding protein activation of phospholipase D evidenced by increased phosphatidic acid formation. Phosphatidic acid formation and O2- production were inhibited by MY4 and POF. Our results suggest that the actions of these agents occur at an early step in the excitation-response sequence. In the absence of a second stimulus, LPS plus serum caused an increase in the amount of Gi alpha 2 associated with the membrane via CD14. POF, however, had no effect on Gi alpha 2 in the membrane. POF alone significantly changed the affinity (KD) of the fMet-Leu-Phe receptor of PMN (from 25.2 +/- 4.5 nM to 15.2 +/- 2.4 nM [P < 0.01; n = 4]) at 37 degrees C. The differences between the sites of action of MY4 and POF may lead to cooperation by these agents for inhibition of priming by LPS plus serum for enhanced O2- production. Clinical use of the antibody and POF may diminish tissue damage caused by PMN in clinical endotoxic shock.

Documentos Relacionados